GABA transient sets the susceptibility of mIPSCs to modulation by benzodiazepine receptor agonists in rat hippocampal neurons

نویسندگان

  • Jerzy W Mozrzymas
  • Tomasz Wójtowicz
  • Michał Piast
  • Katarzyna Lebida
  • Paulina Wyrembek
  • Katarzyna Mercik
چکیده

Benzodiazepines (BDZs) are known to increase the amplitude and duration of IPSCs. Moreover, at low [GABA], BDZs strongly enhance GABAergic currents suggesting the up-regulation of agonist binding while their action on gating remains a matter of debate. In the present study we have examined the impact of flurazepam and zolpidem on mIPSCs by investigating their effects on GABA(A)R binding and gating and by considering dynamic conditions of synaptic receptor activation. Flurazepam and zolpidem enhanced the amplitude and prolonged decay of mIPSCs. Both compounds strongly enhanced responses to low [GABA] but, surprisingly, decreased the currents evoked by saturating or half-saturating [GABA]. Analysis of current responses to ultrafast GABA applications indicated that these compounds enhanced binding and desensitization of GABA(A) receptors. Flurazepam and zolpidem markedly prolonged deactivation of responses to low [GABA] but had almost no effect on deactivation at saturating or half-saturating [GABA]. Moreover, at low [GABA], flurazepam enhanced desensitization-deactivation coupling but zolpidem did not. Recordings of responses to half-saturating [GABA] applications revealed that appropriate timing of agonist exposure was sufficient to reproduce either a decrease or enhancement of currents by flurazepam or zolpidem. Recordings of currents mediated by recombinant ('synaptic') alpha1beta2gamma2 receptors reproduced all major findings observed for neuronal GABA(A)Rs. We conclude that an extremely brief agonist transient renders IPSCs particularly sensitive to the up-regulation of agonist binding by BDZs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Benzodiazepine tolerance at GABAergic synapses on hippocampal CA1 pyramidal cells.

Modulation of GABA function following 1 week oral administration of flurazepam (FZP) was investigated in chloride-loaded, rat hippocampal CA1 pyramidal neurons. Rats were sacrificed 2 or 7 days after ending drug treatment, when anticonvulsant tolerance was present or absent in vivo, respectively. Spontaneous (s)IPSCs and miniature (m)IPSCs were recorded using whole-cell voltage-clamp techniques...

متن کامل

Melatonin modulates the GABAergic response in cultured rat hippocampal neurons.

In the present study, we investigated the effect of melatonin on the GABA-induced current (I(GABA) and GABAergic miniature inhibitory postsynaptic currents (mIPSCs) in cultured rat hippocampal neurons using the whole-cell patch-clamp technique. We found that melatonin rapidly and reversibly enhanced I(GABA) in a dose-dependent manner, with an EC50 of 949 μM. Melatonin markedly enhanced the peak...

متن کامل

Protracted postnatal development of inhibitory synaptic transmission in rat hippocampal area CA1 neurons.

In the CNS, inhibitory synaptic function undergoes profound transformation during early postnatal development. This is due to variations in the subunit composition of subsynaptic GABA(A) receptors (GABA(A)Rs) at differing developmental stages as well as other factors. These include changes in the driving force for chloride-mediated conductances as well as the quantity and/or cleft lifetime of r...

متن کامل

Actions and release characteristics of secretin in the rat cerebellum

Secretin, a peptide hormone of the gastrointestinal system, has been implicated in the etiology of autism. Our laboratory previously demonstrated the expression of secretin and its receptors in specific central neurons, and found for the first time that secretin is neuroactive in the cerebellum. We showed that bath application of secretin facilitated the release of GABA from terminals of basket...

متن کامل

Actions and release characteristics of secretin in the rat cerebellum

Secretin, a peptide hormone of the gastrointestinal system, has been implicated in the etiology of autism. Our laboratory previously demonstrated the expression of secretin and its receptors in specific central neurons, and found for the first time that secretin is neuroactive in the cerebellum. We showed that bath application of secretin facilitated the release of GABA from terminals of basket...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Physiology

دوره 585  شماره 

صفحات  -

تاریخ انتشار 2007